3.301 \(\int (a+a \cos (c+d x))^2 \sqrt {\sec (c+d x)} \, dx\)

Optimal. Leaf size=107 \[ \frac {2 a^2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\frac {8 a^2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d}+\frac {4 a^2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d} \]

[Out]

2/3*a^2*sin(d*x+c)/d/sec(d*x+c)^(1/2)+4*a^2*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*
d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d+8/3*a^2*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c
)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d

________________________________________________________________________________________

Rubi [A]  time = 0.12, antiderivative size = 107, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.261, Rules used = {3238, 3788, 3771, 2639, 4045, 2641} \[ \frac {2 a^2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\frac {8 a^2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d}+\frac {4 a^2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Cos[c + d*x])^2*Sqrt[Sec[c + d*x]],x]

[Out]

(4*a^2*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d + (8*a^2*Sqrt[Cos[c + d*x]]*Elliptic
F[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*d) + (2*a^2*Sin[c + d*x])/(3*d*Sqrt[Sec[c + d*x]])

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 3238

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^(n_.))^(p_.), x_Symbol] :> Dist
[d^(n*p), Int[(d*Csc[e + f*x])^(m - n*p)*(b + a*Csc[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, d, e, f, m, n, p}, x
] &&  !IntegerQ[m] && IntegersQ[n, p]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3788

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^2, x_Symbol] :> Dist[(2*a*b)/
d, Int[(d*Csc[e + f*x])^(n + 1), x], x] + Int[(d*Csc[e + f*x])^n*(a^2 + b^2*Csc[e + f*x]^2), x] /; FreeQ[{a, b
, d, e, f, n}, x]

Rule 4045

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) + (A_)), x_Symbol] :> Simp[(A*Cot[e
 + f*x]*(b*Csc[e + f*x])^m)/(f*m), x] + Dist[(C*m + A*(m + 1))/(b^2*m), Int[(b*Csc[e + f*x])^(m + 2), x], x] /
; FreeQ[{b, e, f, A, C}, x] && NeQ[C*m + A*(m + 1), 0] && LeQ[m, -1]

Rubi steps

\begin {align*} \int (a+a \cos (c+d x))^2 \sqrt {\sec (c+d x)} \, dx &=\int \frac {(a+a \sec (c+d x))^2}{\sec ^{\frac {3}{2}}(c+d x)} \, dx\\ &=\left (2 a^2\right ) \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx+\int \frac {a^2+a^2 \sec ^2(c+d x)}{\sec ^{\frac {3}{2}}(c+d x)} \, dx\\ &=\frac {2 a^2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\frac {1}{3} \left (4 a^2\right ) \int \sqrt {\sec (c+d x)} \, dx+\left (2 a^2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx\\ &=\frac {4 a^2 \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{d}+\frac {2 a^2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\frac {1}{3} \left (4 a^2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx\\ &=\frac {4 a^2 \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{d}+\frac {8 a^2 \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{3 d}+\frac {2 a^2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 1.05, size = 127, normalized size = 1.19 \[ \frac {a^2 \left (\frac {24 i \, _2F_1\left (-\frac {1}{4},\frac {1}{2};\frac {3}{4};-e^{2 i (c+d x)}\right )}{\sqrt {1+e^{2 i (c+d x)}}}+2 \left (-4 i \sqrt {1+e^{2 i (c+d x)}} \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};-e^{2 i (c+d x)}\right ) \sec (c+d x)+\sin (c+d x)-6 i\right )\right )}{3 d \sqrt {\sec (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Cos[c + d*x])^2*Sqrt[Sec[c + d*x]],x]

[Out]

(a^2*(((24*I)*Hypergeometric2F1[-1/4, 1/2, 3/4, -E^((2*I)*(c + d*x))])/Sqrt[1 + E^((2*I)*(c + d*x))] + 2*(-6*I
 - (4*I)*Sqrt[1 + E^((2*I)*(c + d*x))]*Hypergeometric2F1[1/4, 1/2, 5/4, -E^((2*I)*(c + d*x))]*Sec[c + d*x] + S
in[c + d*x])))/(3*d*Sqrt[Sec[c + d*x]])

________________________________________________________________________________________

fricas [F]  time = 2.13, size = 0, normalized size = 0.00 \[ {\rm integral}\left ({\left (a^{2} \cos \left (d x + c\right )^{2} + 2 \, a^{2} \cos \left (d x + c\right ) + a^{2}\right )} \sqrt {\sec \left (d x + c\right )}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^2*sec(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

integral((a^2*cos(d*x + c)^2 + 2*a^2*cos(d*x + c) + a^2)*sqrt(sec(d*x + c)), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (a \cos \left (d x + c\right ) + a\right )}^{2} \sqrt {\sec \left (d x + c\right )}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^2*sec(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((a*cos(d*x + c) + a)^2*sqrt(sec(d*x + c)), x)

________________________________________________________________________________________

maple [A]  time = 0.47, size = 228, normalized size = 2.13 \[ -\frac {4 \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, a^{2} \left (2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+2 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-3 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-\left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*cos(d*x+c))^2*sec(d*x+c)^(1/2),x)

[Out]

-4/3*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^2*(2*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+2*
(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-3*(sin(1/2
*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-sin(1/2*d*x+1/2*c)
^2*cos(1/2*d*x+1/2*c))/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+
1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (a \cos \left (d x + c\right ) + a\right )}^{2} \sqrt {\sec \left (d x + c\right )}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^2*sec(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((a*cos(d*x + c) + a)^2*sqrt(sec(d*x + c)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \sqrt {\frac {1}{\cos \left (c+d\,x\right )}}\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^2 \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1/cos(c + d*x))^(1/2)*(a + a*cos(c + d*x))^2,x)

[Out]

int((1/cos(c + d*x))^(1/2)*(a + a*cos(c + d*x))^2, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ a^{2} \left (\int 2 \cos {\left (c + d x \right )} \sqrt {\sec {\left (c + d x \right )}}\, dx + \int \cos ^{2}{\left (c + d x \right )} \sqrt {\sec {\left (c + d x \right )}}\, dx + \int \sqrt {\sec {\left (c + d x \right )}}\, dx\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))**2*sec(d*x+c)**(1/2),x)

[Out]

a**2*(Integral(2*cos(c + d*x)*sqrt(sec(c + d*x)), x) + Integral(cos(c + d*x)**2*sqrt(sec(c + d*x)), x) + Integ
ral(sqrt(sec(c + d*x)), x))

________________________________________________________________________________________